

SHARE Technology · Connections · Results

IMS 12 System Enhancements and the IMS Repository

Angie Greenhaw and Diane Goff IBM

March 2, 2011 Session #8573

SHARE sessions on IMS 12

- IMS System Enhancements and the IMS Repository
 - Session # 8573 Wed. 3:00PM Room 211A
- IMS Database and DBRC Enhancements
 - Session # 8574 Wed. 4:30PM Room 211A
- IMS Transaction Manager Enhancements
 - Session # 8575 Wed. 6:00PM Room 211A

IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements
- IMS repository

Dynamic Resource Definition (DRD) Enhancements

Technology · Connections · Resul

- New UPDATE option for IMPORT command
 - Previously, IMPORT could only be used for adding runtime resource definitions/descriptors that did not exist in the target IMS system
 - New IMPORT .. OPTION(UPDATE) allows existing runtime resource definitions/descriptors in the the target IMS to be changed
 - · Command fails if changed definition is in use
- DRD usage of the IMS repository function
 - Previously, stored resource definitions/descriptors were kept in resource definition data sets (RDDSs)
 - New IMS repository function provides an additional method for storing stored resource definitions/descriptors
 - IMS repository will be described later in this session
- Benefits
 - Improved manageability for DRD

Extended Address Volume (EAV) Enhancement

- IMS 12 allows certain non-VSAM IMS data sets to use EAV volumes
 - Data sets can reside in Extended Address Space (EAS) on EAV volumes
 - z/OS addressable disk storage increased beyond 65K cylinders
 - New architecture will support 100's of Terabytes on single volume
 - Storage is addressed using new 28-bit cylinder/track address
 - Requires z/OS 1.12
- IMS 11 provided support for IMS VSAM data sets to use EAV volumes

Maximum Sizes

EAV Key Design Points

EAV

- EAV maintains 3390 track format
 - Track-managed space:
 - Area on EAV within the first 65,520 cyls
 - Space allocated in track or cyl increments
 - Storage for "small" data sets
 - Cylinder-managed space:
 - Area on EAV located above first 65,520 cyls
 - Space is allocated in multicylinder units
 - Storage for "large" data sets
 - New DSCB format types identify EAS data sets
 - New formats (Format 8 and 9) in VTOC
 - Data set resides in cylinder-managed space

Non-VSAM IMS Data Sets Supported

- Overflow Sequential Access Method (OSAM) data sets
 - OSAM database data sets
 - Restart data set (RDS)
 - Message queue blocks data set
 - Long and short message data set
- IMS Online Log Data Sets (OLDS)
- IMS Write Ahead Data Sets (WADS)
- IMS SPOOL data sets
- BPE External Trace Data Sets

Extended Address Volume (EAV) Enhancement for non-VSAM data sets

• Prerequisites

- Software requirements
 - z/OS 1.12
- Hardware requirements
 - DS8000, DS8700
 - 3390 Model A
- Benefits
 - Supports the placement of more data sets on a single volume
 - Allow users to manage fewer numbers of larger volumes
 - Less need for multi-volume OSAM

IMS Logger Enhancements ...

- Extended Format Support for OLDS and SLDS (optional)
- Option for log buffers above the 2-gigabyte boundary ("bar") in virtual
- WADS management changed to be more efficient

IMS Logger Enhancements ...

SHARE Technology · Connections · Results

- New optional capability for OLDS and SLDS
 - IMS 12 allows OLDS and SLDS to be defined as extended format data sets
 - Use of extended format data sets allows striping
 - Striping allows multiple concurrent I/Os for sequential processing
 - Data set is spread across multiple volumes
 - Increased logging rates
- Option for log buffers above the 2-gigabyte boundary ("bar") in virtual
 - Frees substantial amount of ECSA
 - OLDS must be in extended format with BLKSIZE 4K multiple
 - BUFSTOR=64 on OLDSDEF statement in DFSVSMxx

IMS Logger Enhancements

- SHARE Technology · Connections · Results
- WADS management changed to be more efficient
 - Track groups no longer used
 - WADS written in wrap around fashion
 - WADS should be sized to provide enough space for any OLDS buffers not yet written at any time plus one track
 - WADS should be kept in cache in storage subsystem

Benefits

- Increased logging bandwidth / improved logging performance
- ECSA constraint relief
- Simplified WADS management for improved performance

System Pools Storage Enhancement

- Storage for selected database pools is obtained in 31-bit virtual storage, backed by 64-bit real storage
 - DBWP Database work pool
 - DLDP DMB pool
 - DLMP CSA PSB pool
 - DPSB DLI PSB pool
 - PSBW PSB work pool
- Benefits
 - Reduction in 31-bit fixed real frames for fixed pools
 - Some users will now be able to fix these pools
 - Previously, they were constrained by 31-bit real storage

Command Enhancements

- Enhancements to existing commands and new commands
 - CQS trace command enhancements
 - DBRC command enhancements
 - Dynamic database buffer pool command enhancements
 - Dynamic resource definition (DRD) command enhancements
 - Fast Path secondary index command enhancements
 - HALDB command enhancements
 - IMS Connect command enhancements
 - MSC command enhancements
 - IMS repository function command enhancements
 - OTMA command enhancements

Command Enhancements

Technology · Connections · Result

- Enhancements are focused on type-2 commands for the Operations Manager (OM) environment
- Benefits
 - Support of new IMS 12 functions
 - Improved manageability

Syntax Checker Enhancements

SHARE Technology · Connections · Results

- Syntax Checker supports PROCLIB members for IMS 12 / IMS 11 / IMS 10
 - IMS 9 PROCLIB members are not supported
- All previously supported members are supported
 - Newly added parameters of these members are supported
- Support added for Repository Server configuration member
- Support added to view/save parameters of members in a custom order
 - Formerly, only alphabetical order was used
- Benefits
 - Support of new IMS 12 PROCLIB members
 - Improved usability with custom order of parameters

CQS Traceability Enhancements

SHARE Technology · Connections · Results

- Existing CQS structure trace table (STR) can quickly fill, wrap around, and lose critical trace entries
- Two new BPE trace tables are available to track CQS structure events
 - One for overflow events (OFLW), one for structure events (SEVT)
 - Retain critical trace data for longer periods of time
- Benefits
 - Improves CQS serviceability

IMS Repository

- Overview of the IMS Repository Function
- IMS Repository Function Components
 - Repository Server (RS) address space
 - Repository catalog data sets
 - Repository data sets
 - CSL requirements and RM usage
- IMS Repository setup
 - Repository Server setup
 - Creating/enabling an IMSRSC repository for DRD
- IMS Repository commands and usage
- Migration to DRD with the repository

Technology · Connections · Result

IMS Repository Function Overview

SHARE Technology · Connections · Results

- A 'repository' is a generalized data storage facility that can be used to store various types of information
- The IMS repository function is a centralized method for storing and retrieving resource definitions in an IMSplex
 - Enables multiple IMS systems in a multiple-IMS IMSplex to manage, store, share, and retrieve resource definitions
 - Enables a single IMS system in a single-IMS IMSplex to manage, store, share, and retrieve resource definitions
- Focus is on improving the systems management and resource management aspects of handling IMS resource definitions
 - Across multiple IMSs or for a single standalone IMS
 - For test systems, for production systems

IMS Repository Function Usage

SHARE Technology · Connections · Results

- In IMS 12, the resource and descriptor definitions for Dynamic Resource Definition (DRD) can be stored in an IMS repository
 - Contains resource definitions for programs/transactions/databases/FP routing codes & descriptors
 - Called the IMSRSC, the IMS resource definition repository
 - Provides an alternative to using RDDSs (resource definition data sets) for DRD
 - Replaces one or more sets of RDDSs in an IMSplex with a single repository
 - Eliminates the need to manually coordinate and manage separate RDDSs per IMS across a multiple-IMS IMSplex
 - Provides an alternative to using MODBLKs with SYSGEN and online change
 - Considered a strategic alternative to the RDDS
- IMS 12 can retrieve the stored resource definitions from the IMSRSC repository to dynamically generate runtime resources for DRD

IMS 12 support for the DRD function ...

SHARE Technology · Connections · Results

- DRD users in IMS 10 and IMS 11 moving to IMS 12
 - Can use existing RDDSs from IMS 10 or IMS 11 for stored resource definitions in IMS 12
 - Can use existing RDDSs from IMS 10 and IMS 11 for stored resource definitions at initial migration to IMS 12, then can migrate to the new IMSRSC repository
 - Can use the new IMSRSC repository to store definitions in IMS 12

IMS 12 support for the DRD function

SHARE Technology · Connections · Results

- Users in IMS 10 and IMS 11 without DRD
 - Can use the new IMSRSC repository for stored resource definitions in IMS 12
 - Can create new RDDSs for stored resource definitions in IMS 12
- Both RDDSs (system and non-system) and the IMSRSC repository can exist together during migration to the IMSRSC repository

IMS Repository Function Benefits

- SHARE Technology · Connections · Results
- Consolidation of resource definitions in a single place, the repository
- DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)
- Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes
- Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository
- Improvements in IMSplex systems and resource management with the repository
- A strategic direction for IMS architecture

- A Repository Server (RS)
- Repositories
 - Catalog repository
 - IMSRSC repository(s)
- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Operations Manager (OM)
 - Resource Manager (RM)
 - Structured Call Interface (SCI)
 - SPOC for entering type-2 commands
 - Optional resource structure with CQS address space
- Batch utilities
 - Batch ADMIN utility
 - RDDS to / from repository utilities

- A Repository Server (RS)
 - A new BPE-based address space
 - Managed by the RM CSL address space
 - Two types
 - Master Repository Server
 - Single instance
 - Manages access to repository data sets
 - First RS address space to access repository
 - Subordinate Repository Server
 - One or more instances
 - Used if master Repository Server goes down
 - Optional but recommended

- A Repository Server (RS)
 - Uses VSAM KSDS data sets to store information
 - Can be on a separate LPAR in the parallel sysplex
 - Recommendation
 - One master Repository Server address space per IMSplex

- A Repository Server (RS)
 - Has its own internal repository called the 'catalog repository'
 - Manages IMS repositories (IMSRSC for DRD)
 - Ensures repository data integrity
 - Uses SAF to restrict access to repositories
 - Provides an audit trail using the z/OS logger
 - Provides tracing capabilities via BPE

- Repository data sets
 - Multiple sets of VSAM KSDS data sets
 - Each set composed of
 - Repository index data set
 - Repository member data set
 - Each of these has a primary and secondary data set (duplexed)
 - Optional spare set (third) can be defined
 - Two types of repository data sets
 - Catalog repository data sets
 - IMS repository data sets

- Catalog repository (RS catalog data sets)
 - Required per Repository Server
 - Manages the Repository Server (RS) functions
 - Manages information about IMS repository data sets
 - Composed of two pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - No spare capability

- IMS repositories
 - IMSRSC repository contains
 - Stored resource definitions for DRD resources for one or more DRD-enabled IMS systems
 - Programs / transactions / databases / FP routing codes and descriptors
 - Resource lists for each IMS
 - Contains resource names and resource types that can be processed by an IMS system
 - Changed resource lists for each IMS
 - Contain resource changes made when an IMS is down
 - Typically one IMSRSC repository per Repository Server (RS) per IMSplex

- IMS repositories
 - IMSRSC repository
 - Composed of up to three pairs of data sets
 - Primary index data set and primary member data set (required)
 - Secondary index data set and secondary member data set (required)
 - Spare index data set and spare member data set (optional)

- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Operations Manager (OM)
 - Used for new/modified type-2 commands for repository functions
 - Resource Manager (RM)
 - Used for managing the new Repository Server (RS) address space
 - All online access to Repository Server is through RM address space
 - New type-2 commands for managing the Repository Server
 - UPDATE RM
 - QUERY RM
 - RM is enabled to the repository by specifying a Repository Section in the RM initialization member (CSLRIxxx)

- A Common Service Layer (CSL) IMSplex configuration consisting of
 - Structured Call Interface (SCI)
 - Used for communications within the CSL
 - Not used for communications between RM and the RS
 - RS is not considered a CSL manager
 - Optionally, a resource structure in a Coupling Facility
 - Used for repository name and repository type consistency if present
 - Managed by a Common Queue Server (CQS) address space
 - Multiple RMs in an IMSplex require that a resource structure exists
 - SPOC (single point of control) for entering type-2 commands
 - Can be a single-IMS IMSplex or a multiple-IMS IMSplex

- Batch utilities
 - Batch ADMIN utility (FRPBATCH)
 - Commands for managing IMSRSC repositories
 - Functions such as ADD a new IMSRSC repository, LIST the characteristics of an IMSRSC repository, START or STOP an IMSRSC repository
 - RDDS to / from repository utilities (Batch RM utilities)
 - RDDS to Repository Utility (CSLURP10)
 - For migration
 - Repository to RDDS Utility (CSLURP20)
 - For fallback

IMS Repository Setup

SHARE Technology · Connections · Results

- Repository Server setup
- Creating / enabling an IMSRSC repository for DRD

IMS Repository Setup

- Repository Server
 - Create catalog repository data sets
 - Set up BPE configuration member
 - Set up FRPCONFG configuration member
 - Repository Server settings
 - Audit log definitions
 - Define security
 - Set up the CSL
 - RM needs new CSLRIxxx repository section
 - Set up IMS
 - DFSDFxxx needs new repository section
 - Start the master Repository Server
 - Start subordinate Repository Servers

Technology · Connections · Resul

Enabling an IMSRSC repository for DRD

- Create IMSRSC repository data sets
- Define security for IMS repository
- Define the IMSRSC repository to the Repository Server
- Start the IMSRSC repository
- Enable the IMSRSC repository to RM and IMS
- Populate the IMSRSC repository
 - If IMS is up, populate using the EXPORT DEFN TARGET(REPO) command to add DRD stored resource definitions to the IMSRSC repository
 - If IMS is down, use the batch RDDS to Repository Utility (CSLURP10) to populate the IMSRSC repository

IMSRSC repository is active & populated

SHARE Technology · Connections · Results

 Begin to use type-2 DRD repository commands that access/update stored resource definitions in the repository

```
EXPORT DEFN TARGET(REPO) TYPE(ALL) NAME(*)

IMPORT DEFN SOURCE(REPO) TYPE(DB) NAME(DBABC)

OPTION(UPDATE)

DELETE DEFN TARGET(REPO) TYPE(DB) NAME(DBXYZ)

QUERY IMS

QUERY DB/PGM/TRAN/RTC SHOW(DEFN)
```


IMS Repository Commands

Technology · Connections · Result

- IMS and RM IMSplex commands issued from SPOC or Manage Resource panels
- Batch ADMIN commands
- Repository Server commands issued through z/OS modify interface

IMS and RM IMSplex Commands issued from SPOC or Manage Resources panels

- UPDATE RM
- QUERY RM
- UPDATE IMS
- QUERY IMS

For management of repository and RDDS functions

For status of RM and IMS

- EXPORT DEFN TARGET (REPO)
- IMPORT DEFN SOURCE (REPO)
- DELETE DEFN

For working with DRD stored resource definitions in the repository

• QUERY DB/DBDESC/PGM/PGMDESC/TRAN/TRANDESC/RTC/RTCDESC SHOW(DEFN)

> For displaying stored resource definitions in the repository and their attributes

 DRD commands (CREATE, UPDATE, DELETE) work with runtime definitions, not the stored resource definitions in the repository

Batch ADMIN commands (FRPBATCH)

Commands for managing repositories (IMSRSC)

Repository Server Commands Issued Through the z/OS Modify Interface

Connections • Result

Functions for managing a Repository Server (RS) and its repositories (IMSRSC)

Technology · Connections · Result

IMS Repository Migration Overview ...

- From DRD with RDDSs to DRD with Repository
- From no DRD to DRD with Repository

IMS Repository Migration Overview ...

SHARE Technology · Connections · Results

- From DRD with RDDSs to DRD with Repository
 - Create non-system RDDS that contains current definitions via EXPORT command or DRD utilities
 - Set up repository parameters in PROCLIB members FRPCONFG, BPECONFG, CSLRIxxx, DFSDFxxx
 - Create catalog repository data sets and IMSRSC repository data sets
 - Start the Repository Server address space
 - Use the batch ADMIN utility to define the IMSRSC data sets to the Repository Server
 - Run the batch RDDS to Repository utility to populate the repository
 - Cold start IMS with AUTOIMPORT specified

Technology • Connections • Resul

IMS Repository Migration Overview

- From no DRD to DRD with Repository
 - First implement DRD with RDDSs
 - Set up DRD parameters in DFSDFxxx
 - MODBLKS=DYN, RDDSDSN=, AUTOIMPORT=MODBLKS
 - Cold start IMS using updated DFSDFxxx
 - AUTOIMPORT will use MODBLKS for definitions
 - Online change now disabled
 - Follow process to migrate from DRD with RDDSs to DRD with repository

IMS Repository Function Benefits

- SHARE Technology · Connections · Results
- Consolidation of resource definitions in a single place, the repository
- DRD definitions are the initial implementation of the IMS repository function (to replace RDDSs)
- Full support for populating, managing, storing, sharing, and retrieving a consistent set of DRD stored resource definitions for multiple-IMS IMSplexes and single-IMS IMSplexes
- Manual coordination of multiple RDDSs in a multiple-IMS IMSplex eliminated, replaced by basic functioning of the IMS repository
- Improvements in IMSplex systems and resource management with the repository
- A strategic direction for IMS architecture

IMS 12 System Enhancements

- Dynamic resource definition (DRD) enhancements
- Extended address volume (EAV) enhancement
- IMS logger enhancements
- System pools storage enhancement
- Command enhancements
- Syntax checker enhancements
- CQS traceability enhancements
- IMS repository function

